Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Toxicol Pathol ; 50(4): 432-465, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730663

RESUMEN

Beagle dogs are a key nonrodent species in nonclinical safety evaluation of new biomedical products. The Society of Toxicologic Pathology (STP) has published "best practices" recommendations for nervous system sampling in nonrodents during general toxicity studies (Toxicol Pathol 41[7]: 1028-1048, 2013), but their adaptation to the Beagle dog has not been defined specifically. Here we provide 2 trimming schemes suitable for evaluating the unique neuroanatomic features of the dog brain in nonclinical toxicity studies. The first scheme is intended for general toxicity studies (Tier 1) to screen test articles with unknown or no anticipated neurotoxic potential; this plan using at least 7 coronal hemisections matches the STP "best practices" recommendations. The second trimming scheme for neurotoxicity studies (Tier 2) uses up to 14 coronal levels to investigate test articles where the brain is a suspected or known target organ. Collection of spinal cord, ganglia (somatic and autonomic), and nerves for dogs during nonclinical studies should follow published STP "best practices" recommendations for sampling the central (Toxicol Pathol 41[7]: 1028-1048, 2013) and peripheral (Toxicol Pathol 46[4]: 372-402, 2018) nervous systems. This technical guide also demonstrates the locations and approaches to collecting uncommonly sampled peripheral nervous system sites.


Asunto(s)
Síndromes de Neurotoxicidad , Pruebas de Toxicidad , Animales , Perros , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/veterinaria , Sistema Nervioso Periférico , Manejo de Especímenes , Médula Espinal
2.
Toxicol Pathol ; 49(8): 1393-1404, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34620014

RESUMEN

The Society of Toxicologic Pathology's Annual Virtual Symposium (2021) included a session on "Regulatory Perspectives on Juvenile Animal Toxicologic Pathology." The following narrative summarizes the key concepts from the four talks included in this symposium session chaired by Drs Deepa Rao and Alan Hoberman. These encompass an overview of various global regulations impacting the conduct of juvenile animal studies in pharmaceutical drug development and chemical toxicity assessments in a talk by Dr Alan Hoberman. Given the numerous regulatory guidances and legal statutes that have covered the conduct of juvenile animal studies and the recent harmonization of these guidances for pharmaceuticals, Dr Paul Brown provided an update on the harmonization of these guidances for pharmaceuticals, in the recently finalized version of the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S11 guidance document, "Nonclinical Safety Testing in Support of Development of Pediatric Medicines." The first two talks on regulations were followed by two talks focused on an evaluation of the postnatal development of two major organ systems relevant in juvenile animals. Dr Aurore Varela covered study design and endpoints impacting the skeletal system (bone), while Dr Brad Bolon presented a talk on the study design and conduct of neuropathology evaluations for the developing nervous system.


Asunto(s)
Animales de Laboratorio , Proyectos de Investigación , Animales
3.
Neurotoxicol Teratol ; 87: 106993, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33945878

RESUMEN

With the increasing use of ketamine as an off-label treatment for depression and the recent FDA approval of (S)-ketamine for treatment-resistant depression, there is an increased need to understand the long-term safety profile of chronic ketamine administration. Of particular concern is the neurotoxicity previously observed in rat models following acute exposure to high doses of ketamine, broadly referred to as 'Olney's lesions'. This type of toxicity presents as abnormal neuronal cellular vacuolization, followed by neuronal death and has been associated with ketamine's inhibition of the N-methyl-d-aspartate receptor (NMDAR). In this study, a pharmacological and neuropathological analysis of ketamine, the potent NMDAR antagonist MK-801, and the ketamine metabolite (2R,6R)-hydroxynorketamine [(2R,6R)-HNK)] in rats is described following both single dose and repeat dose drug exposures. Ketamine dosing was studied up to 20 mg/kg intravenously for the single-dose neuropathology study and up to 60 mg/kg intraperitoneally for the multiple-dose neuropathology study. MK-801 dosing was studied up to 0.8 mg/kg subcutaneously for both the single and multiple-dose neuropathology studies, while (2R,6R)-HNK dosing was studied up to 160 mg/kg intravenously in both studies. These studies confirm dose-dependent induction of 'Olney's lesions' following both single dose and repeat dosing of MK-801. Ketamine exposure, while showing common behavioral effects, did not induce wide-spread Olney's lesions. Treatment with (2R,6R)-HNK did not produce behavioral effects, toxicity or any evidence of Olney's lesion formation. Based on these results, future NMDAR-antagonist neurotoxicity studies should strongly consider taking pharmacokinetics more thoroughly into account.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Ketamina/análogos & derivados , Ketamina/farmacología , Animales , Antidepresivos/administración & dosificación , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratas Wistar
4.
Toxicol Pathol ; 49(3): 455-471, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33243077

RESUMEN

Visual system toxicity may manifest anywhere in the visual system, from the eye proper to the visual brain. Therefore, effective screening for visual system toxicity must evaluate not only ocular structures (ie, eye and optic nerve) but also multiple key brain regions involved in vision (eg, optic tract, subcortical relay nuclei, and primary and secondary visual cortices). Despite a generally comparable pattern across species, the neuroanatomic organization and function of the visual brain in rodents and rabbits exhibit appreciable differences relative to nonrodents. Currently recognized sampling practices for general toxicity studies in animals, which are based on easily discerned external neuroanatomic landmarks and guided by extant stereotaxic brain atlases, typically will permit histopathologic evaluation of many brain centers involved in visual sensation (eg, optic chiasm, optic tract, dorsal lateral geniculate nucleus, primary and secondary visual cortices) and often some subcortical brain nuclei involved in light-modulated nonvisual activities needed for visual attention and orientation (eg, rostral colliculus in quadrupeds, termed the superior colliculus in bipeds; several cranial nerve nuclei). Pathologic findings induced by toxicants in the visual brain centers are similar to those that are produced in other brain regions.


Asunto(s)
Cuerpos Geniculados , Neuroanatomía , Animales , Encéfalo , Mamíferos , Conejos , Retina , Colículos Superiores
5.
Toxicol Pathol ; 48(7): 810-826, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33094688

RESUMEN

Although manuscripts for multiple species recommending nervous system sampling for histopathology evaluation in safety assessment have been published in the past 15 years, none have addressed the laboratory rabbit. Here, we describe 2 trimming schemes for evaluating the rabbit brain in nonclinical toxicity studies. In both schemes, the intact brain is cut in the coronal plane to permit bilateral assessment. The first scheme is recommended for general toxicity studies (tier 1) in screening agents where there is no anticipated neurotoxic potential; this 6-section approach is consistent with the Society of Toxicologic Pathology (STP) "best practice" recommendations for brain sampling in nonrodents (Toxicol Pathol 41: 1028-1048, 20131). The second trimming scheme is intended for dedicated neurotoxicity studies (tier 2) to characterize known or suspected neurotoxicants where the nervous system is a key target organ. This tier 2 strategy relies on coronal trimming of the whole brain into 3-mm-thick slices and then evaluating 12 sections. Collection of spinal cord, ganglia, and nerve specimens for rabbits during nonclinical studies should follow published STP "best practice" recommendations for sampling the central nervous system1 and peripheral nervous system (Toxicol Pathol 46: 372-402, 20182).


Asunto(s)
Síndromes de Neurotoxicidad , Animales , Técnicas Histológicas , Sistema Nervioso , Síndromes de Neurotoxicidad/etiología , Sistema Nervioso Periférico , Conejos , Manejo de Especímenes , Médula Espinal
6.
Toxicol Pathol ; 48(7): 827-844, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912053

RESUMEN

Harmonization of diagnostic terminology used during the histopathologic analysis of rodent tissue sections from nonclinical toxicity studies will improve the consistency of data sets produced by laboratories located around the world. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a cooperative enterprise of 4 major societies of toxicologic pathology to develop a globally accepted standard vocabulary for proliferative and nonproliferative lesions in rodents. A prior manuscript (Toxicol Pathol 2012;40[4 Suppl]:87S-157S) defined multiple diagnostic terms for toxicant-induced lesions, common spontaneous and age-related changes, and principal confounding artifacts in the rat and mouse central nervous system (CNS) and peripheral nervous system (PNS). The current article defines 9 new diagnostic terms and updates 2 previous terms for findings in the rodent CNS and PNS, the need for which has become evident in the years since the publication of the initial INHAND nomenclature for findings in rodent neural tissues. The nomenclature presented in this document is also available electronically on the Internet at the goRENI website (http://www.goreni.org/).


Asunto(s)
Sistema Nervioso Periférico , Animales , Ratones , Ratas
7.
Toxicol Pathol ; 48(1): 59-70, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31221022

RESUMEN

Analysis of intraepidermal nerve fibers (IENFs) in skin biopsy samples has become a standard clinical tool for diagnosing peripheral neuropathies in human patients. Compared to sural nerve biopsy, skin biopsy is safer, less invasive, and can be performed repeatedly to facilitate longitudinal assessment. Intraepidermal nerve fiber analysis is also more sensitive than conventional nerve histology or electrophysiological tests for detecting damage to small-diameter sensory nerve fibers. The techniques used for IENF analysis in humans have been adapted for large and small animal models and successfully used in studies of diabetic neuropathy, chemotherapy-induced peripheral neuropathy, HIV-associated sensory neuropathy, among others. Although IENF analysis has yet to become a routine end point in nonclinical safety testing, it has the potential to serve as a highly relevant indicator of sensory nerve fiber status in neurotoxicity studies, as well as development of neuroprotective and neuroregenerative therapies. Recently, there is also interest in the evaluation of IENF via skin biopsy as a biomarker of small fiber neuropathy in the regulatory setting. This article provides an overview of the anatomic and pathophysiologic principles behind IENF analysis, its use as a diagnostic tool in humans, and applications in animal models with focus on comparative methodology and considerations for study design.


Asunto(s)
Modelos Animales , Fibras Nerviosas , Enfermedades del Sistema Nervioso Periférico , Animales , Biomarcadores , Biopsia , Epidermis , Femenino , Humanos , Masculino , Piel
8.
Toxicol Pathol ; 48(1): 78-86, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31345129

RESUMEN

Assessment of the peripheral nervous system (PNS) tissues during animal toxicity studies generally is included within guiding documents issued by regulatory agencies of individual nations (eg, US Environmental Protection Agency, US Food and Drug Administration) and multinational federations (eg, European Medicines Agency) as well as international cooperative efforts (eg, International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, Organisation for Economic Co-operation and Development). The present list of major regulatory guiding documents categorizes recommendations from around the world for sampling and processing PNS tissues (nerves and ganglia) for general animal toxicity studies (ie, where neurotoxicity is not expected) and specialized neurotoxicity studies (ie, where neurotoxicity is anticipated or known to occur). In general, regulatory guidelines call for collection of one or more sensorimotor nerves (usually the sciatic trunk and its branches), though details vary among agencies. Regulatory guiding documents represent a "starting point," after which additional PNS samples and/or special methods may be implemented at the applicant's discretion. Best practice recommendations for PNS sampling and processing in animal toxicity studies endorsed by multiple global societies of toxicologic pathology encompass and expand on existing regulatory guidelines.


Asunto(s)
Sistema Nervioso Periférico , Pruebas de Toxicidad , Animales , Animales de Laboratorio , Humanos , Laboratorios , Síndromes de Neurotoxicidad , Organización para la Cooperación y el Desarrollo Económico , Proyectos de Investigación , Manejo de Especímenes , Estados Unidos , United States Environmental Protection Agency , United States Food and Drug Administration
9.
Toxicol Pathol ; 48(1): 5-9, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31845625

RESUMEN

Neuropathology of the peripheral nervous system (PNS) is an underappreciated area in toxicologic pathology. Toxicity to nerves and ganglia can result from toxic insults following exposure to environmental, occupational, and industrial chemicals; drugs and biologics; cosmetics and food additives; and even physical agents such as noise. The following introduction provides an overview of this special issue of Toxicologic Pathology on toxicologic neuropathology of the PNS and highlights the range of key topics in this field that are reviewed in this compilation.


Asunto(s)
Neuropatología , Sistema Nervioso Periférico , Toxicología , Animales , Humanos
10.
J Clin Invest ; 129(12): 5442-5461, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31527311

RESUMEN

Manganese (Mn), an essential metal and nutrient, is toxic in excess. Toxicity classically results from inhalational exposures in individuals who work in industrial settings. The first known disease of inherited Mn excess, identified in 2012, is caused by mutations in the metal exporter SLC30A10 and is characterized by Mn excess, dystonia, cirrhosis, and polycythemia. To investigate the role of SLC30A10 in Mn homeostasis, we first generated whole-body Slc30a10-deficient mice, which developed severe Mn excess and impaired systemic and biliary Mn excretion. Slc30a10 localized to canalicular membranes of hepatocytes, but mice with liver Slc30a10 deficiency developed minimal Mn excess despite impaired biliary Mn excretion. Slc30a10 also localized to the apical membrane of enterocytes, but mice with Slc30a10 deficiency in small intestines developed minimal Mn excess despite impaired Mn export into the lumen of the small intestines. Finally, mice with Slc30a10 deficiency in liver and small intestines developed Mn excess that was less severe than that observed in mice with whole-body Slc30a10 deficiency, suggesting that additional sites of Slc30a10 expression contribute to Mn homeostasis. Overall, these results indicated that Slc30a10 is essential for Mn excretion by hepatocytes and enterocytes and could be an effective target for pharmacological intervention to treat Mn toxicity.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Manganeso/metabolismo , Animales , Bilis/metabolismo , Enterocitos/metabolismo , Femenino , Hepatocitos/metabolismo , Masculino , Manganeso/toxicidad , Ratones , Ratones Endogámicos C57BL
11.
Toxicol Pathol ; 46(8): 1028-1036, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30295173

RESUMEN

Peripheral nervous system (PNS) toxicity is a frequent adverse effect encountered in patients treated with certain therapeutics (e.g., antiretroviral drugs, cancer chemotherapeutics), in occupational workers exposed to industrial chemicals (e.g., solvents), or during accidental exposures to household chemicals and/or environmental agents (e.g., pesticides). However, the literature and expertise needed for the effective design, conduct, analysis, and reporting of safety studies to identify and define PNS toxicity are hard to find. This half-day course familiarized participants with basic PNS biology; causes and mechanisms of PNS pathology; classic methods and current best practice recommendations for PNS sampling, preparation, and evaluation; and examples of commonly observed lesions and artifacts. Three concluding case presentations synthesized information from the prior technical lectures by presenting real-world examples of lesions caused by drugs and chemicals to demonstrate how PNS toxicity may be addressed in evaluating product safety during nonclinical studies. Topics emphasized comparative and correlative data among animal species used in toxicity studies and clinical evaluation in humans in order to facilitate the translation of animal data into human risk assessment with respect to PNS toxicologic pathology.


Asunto(s)
Síndromes de Neurotoxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Animales , Humanos
12.
Toxicol Pathol ; 46(7): 753-763, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30259793

RESUMEN

Early deaths of young or juvenile animals (before sexual maturation is achieved) in routine regulatory safety studies present pathologists and toxicologists with the challenge of interpreting findings in the male reproductive tract. Additionally, the advent of toxicity testing regulations has resulted in a growing need for the use of juvenile animals in toxicology studies. Here, we present the reproductive toxicity findings from a 13-week inhalation toxicity study with ortho-phthalaldehyde (OPA) in male rats and mice as a case example for working through this challenging task. In this study with OPA, survival was significantly reduced in the two highest exposure concentrations of OPA tested. Early deaths and histopathological lesions in the testes and epididymides were generally also limited to these two highest exposure groups. Therefore, there was concern that peripubertal morphological features could be a confounding factor for the histopathological evaluation of exposure-related testicular and epididymal findings. Although it can be difficult to differentiate exposure-related effects from the normal morphological features defining peripubertal changes in the testes and epididymides in animals that die early in a toxicity study, the use of age-matched controls in this case study with OPA provided a reference and aided in the differentiation of these effects.


Asunto(s)
Envejecimiento/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Maduración Sexual/efectos de los fármacos , Testículo/efectos de los fármacos , o-Ftalaldehído/toxicidad , Envejecimiento/patología , Animales , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Ratones Endogámicos , Tamaño de los Órganos/efectos de los fármacos , Ratas Sprague-Dawley , Especificidad de la Especie , Recuento de Espermatozoides , Testículo/crecimiento & desarrollo , Testículo/patología
13.
Toxicol Pathol ; 46(4): 372-402, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29787347

RESUMEN

Peripheral nervous system (PNS) toxicity is surveyed inconsistently in nonclinical general toxicity studies. These Society of Toxicologic Pathology "best practice" recommendations are designed to ensure consistent, efficient, and effective sampling, processing, and evaluation of PNS tissues for four different situations encountered during nonclinical general toxicity (screening) and dedicated neurotoxicity studies. For toxicity studies where neurotoxicity is unknown or not anticipated (situation 1), PNS evaluation may be limited to one sensorimotor spinal nerve. If somatic PNS neurotoxicity is suspected (situation 2), analysis minimally should include three spinal nerves, multiple dorsal root ganglia, and a trigeminal ganglion. If autonomic PNS neuropathy is suspected (situation 3), parasympathetic and sympathetic ganglia should be assessed. For dedicated neurotoxicity studies where a neurotoxic effect is expected (situation 4), PNS sampling follows the strategy for situations 2 and/or 3, as dictated by functional or other compound/target-specific data. For all situations, bilateral sampling with unilateral processing is acceptable. For situations 1-3, PNS is processed conventionally (immersion in buffered formalin, paraffin embedding, and hematoxylin and eosin staining). For situation 4 (and situations 2 and 3 if resources and timing permit), perfusion fixation with methanol-free fixative is recommended. Where PNS neurotoxicity is suspected or likely, at least one (situations 2 and 3) or two (situation 4) nerve cross sections should be postfixed with glutaraldehyde and osmium before hard plastic resin embedding; soft plastic embedding is not a suitable substitute for hard plastic. Special methods may be used if warranted to further characterize PNS findings. Initial PNS analysis should be informed, not masked ("blinded"). Institutions may adapt these recommendations to fit their specific programmatic requirements but may need to explain in project documentation the rationale for their chosen PNS sampling, processing, and evaluation strategy.


Asunto(s)
Técnicas Histológicas/normas , Sistema Nervioso Periférico , Manejo de Especímenes/normas , Toxicología/normas , Animales , Técnicas Histológicas/métodos , Humanos , Sistema Nervioso Periférico/efectos de los fármacos , Sistema Nervioso Periférico/patología , Manejo de Especímenes/métodos , Toxicología/métodos
14.
Neurotoxicology ; 64: 284-290, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28917718

RESUMEN

Following inhalation, manganese travels along the olfactory nerve from the olfactory epithelium (OE) to the olfactory bulb (OB). Occupational exposure to inhaled manganese is associated with changes in olfactory function. This pilot study evaluated two related hypotheses: (a) intranasal manganese administration increases OE and OB manganese concentrations; and (b) intranasal manganese exposure impairs performance of previously trained rats on a go-no-go olfactory discrimination (OD) task. Male Fischer 344 rats were trained to either lever press ("go") in response to a positive conditioned stimulus (CS+: vanillin) or to do nothing ("no go") when a negative conditioned stimulus (CS-: amyl acetate) was present. Following odor training, rats were randomly assigned to either a manganese (200mM MnCl2) or 0.9% saline treatment group (n=4-5 rats/group). Administration of either saline or manganese was performed on isoflurane-anesthetized rats as 40µL bilateral intranasal instillations. Rats were retested 48h later using the vanillin/amyl acetate OD task, then euthanized, followed by collection of the OE and OB. Manganese concentrations in tissue samples were analyzed by ICP-MS. An additional cohort of rats (n=3-4/group) was instilled similarly with saline or manganese and nasal and OB pathology assessed 48h later. Manganese-exposed rats had increased manganese levels in both the OE and OB and decreased performance in the OD task when compared with control animals. Histopathological evaluation of the caudal nasal cavity showed moderate, acute to subacute suppurative inflammation of the olfactory epithelium and submucosa of the ethmoid turbinates and mild suppurative exudate in the nasal sinuses in animals given manganese. No histologic changes were evident in the OB. The nasal instillation and OD procedures developed in this study are useful methods to assess manganese - induced olfactory deficits.


Asunto(s)
Cloruros/toxicidad , Discriminación en Psicología/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Mucosa Olfatoria/efectos de los fármacos , Administración por Inhalación , Animales , Cloruros/administración & dosificación , Cloruros/metabolismo , Masculino , Compuestos de Manganeso/administración & dosificación , Compuestos de Manganeso/metabolismo , Odorantes , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/patología , Proyectos Piloto , Ratas Endogámicas F344
15.
Int J Toxicol ; 35(4): 410-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27012643

RESUMEN

A half-day American College of Toxicology continuing education course presented key issues often confronted by translational neuroscientists when predicting human risk from animal-derived toxicologic pathology data. Two talks correlated discrete structures with major functions in brains of rodents and nonrodents. The third lecture provided practical advice to obtain highly homologous rodent brain sections for quantitative morphometry in developmental neurotoxicity testing. The last presentation discussed demographic influences (eg, species, strain, sex, age), physiological attributes (eg, body composition, brain vascularity, pharmacokinetic/pharmacodynamic patterns, etc), and husbandry parameters (eg, group housing) recognized to impact the actions of neuroactive chemicals. Speakers described common cases of real-world challenges to animal data interpretation encountered when designing studies or extrapolating biological responses across species. The efficiency of translational neuroscience efforts will likely be enhanced as new methods (eg, high-resolution non-invasive imaging) improve our capability to cross-connect subtle anatomic and/or biochemical lesions with functional changes over time.


Asunto(s)
Neurociencias , Investigación Biomédica Traslacional , Animales , Humanos , Síndromes de Neurotoxicidad/patología , Medición de Riesgo , Relación Estructura-Actividad
16.
ILAR J ; 54(3): 315-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24615445

RESUMEN

Despite the progress in our understanding of pathogeneses and the identification of etiologies of peripheral neuropathy, idiopathic neuropathy remains common. Typically, attention to peripheral neuropathies resulting from exposure to environmental agents is limited relative to more commonly diagnosed causes of peripheral neuropathy (diabetes and chemotherapeutic agents). Given that there are more than 80,000 chemicals in commerce registered with the Environmental Protection Agency and that at least 1000 chemicals are known to have neurotoxic potential, very few chemicals have been established to affect the peripheral nervous system (mainly after occupational exposures). A wide spectrum of exposures, including pesticides, metals, solvents, nutritional sources, and pharmaceutical agents, has been related, both historically and recently, to environmental toxicant-induced peripheral neuropathy. A review of the literature shows that the toxicity and pathogeneses of chemicals adversely affecting the peripheral nervous system have been studied using animal models. This article includes an overview of five prototypical environmental agents known to cause peripheral neuropathy--namely, organophosphates, carbon disulfide, pyridoxine (Vitamin B6), acrylamide, and hexacarbons (mainly n-hexane, 2,5-hexanedione, methyl n-butyl ketone). Also included is a brief introduction to the structural components of the peripheral nervous system and pointers on common methodologies for histopathologic evaluation of the peripheral nerves.


Asunto(s)
Modelos Animales de Enfermedad , Sustancias Peligrosas/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/patología , Acrilamida/toxicidad , Animales , Disulfuro de Carbono/toxicidad , Hexanos/toxicidad , Técnicas Histológicas , Organofosfatos/toxicidad , Piridoxina/toxicidad
17.
Food Chem Toxicol ; 66: 254-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24503412

RESUMEN

Trimethylolpropane triacrylate (TMPTA) is a multifunctional monomer with industrial applications. To determine the carcinogenic potential, male and female F344/N rats and B6C3F1/N mice were administered TMPTA (0, 0.3, 1.0, or 3.0mg/kg) in acetone dermally for 2 years. There were no differences in the body weights and survival in the treated animals compared to controls. Nonneoplastic skin lesions at the site of application included epidermal hyperplasia and hyperkeratosis in both rats and mice. There were no incidences of tumors at the site of application in rats and mice. Rare malignant liver neoplasms were observed in female mice that included hepatoblastoma in the 0.3 and 3.0mg/kg groups, and hepatocholangiocarcinoma in the 1.0 and 3.0mg/kg groups. The incidences of uterine stromal polyp and stromal polyp or stromal sarcoma (combined) in female mice occurred with positive trends and the incidences were significantly increased in the 3.0mg/kg group. A marginal increase in the incidences of malignant mesothelioma in male rats may have been related to TMPTA treatment. In conclusion, our studies show that TMPTA is a dermal irritant in both rats and mice of either sex. Increased incidences of tumor formation were observed in female mice and male rats.


Asunto(s)
Acrilatos/toxicidad , Carcinógenos/toxicidad , Factores Sexuales , Animales , Femenino , Masculino , Ratones , Ratas , Ratas Endogámicas F344 , Especificidad de la Especie
18.
Toxicol Pathol ; 42(3): 487-509, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24135464

RESUMEN

This review article is designed to serve as an introductory guide in neuroanatomy for toxicologic pathologists evaluating general toxicity studies. The article provides an overview of approximately 50 neuroanatomical subsites and their functional significance across 7 transverse sections of the brain. Also reviewed are 3 sections of the spinal cord, cranial and peripheral nerves (trigeminal and sciatic, respectively), and intestinal autonomic ganglia. The review is limited to the evaluation of hematoxylin and eosin-stained tissue sections, as light microscopic evaluation of these sections is an integral part of the first-tier toxicity screening of environmental chemicals, drugs, and other agents. Prominent neuroanatomical sites associated with major neurological disorders are noted. This guide, when used in conjunction with detailed neuroanatomic atlases, may aid in an understanding of the significance of functional neuroanatomy, thereby improving the characterization of neurotoxicity in general toxicity and safety evaluation studies.


Asunto(s)
Investigación Biomédica/normas , Encéfalo/anatomía & histología , Histocitoquímica/normas , Patología/normas , Pruebas de Toxicidad/normas , Animales , Femenino , Masculino , Ratas , Estados Unidos
19.
Toxicol Pathol ; 40(2): 321-44, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22089839

RESUMEN

The 2011 annual National Toxicology Program (NTP) Satellite Symposium, entitled "Pathology Potpourri," was held in Denver, Colorado in advance of the Society of Toxicologic Pathology's 30th Annual Meeting. The goal of the NTP Symposium is to present current diagnostic pathology or nomenclature issues to the toxicologic pathology community. This article presents summaries of the speakers' presentations, including diagnostic or nomenclature issues that were presented, along with select images that were used for audience voting or discussion. Some lesions and topics covered during the symposium include: proliferative lesions from various fish species including ameloblastoma, gas gland hyperplasia, nodular regenerative hepatocellular hyperplasia, and malignant granulosa cell tumor; spontaneous cystic hyperplasia in the stomach of CD1 mice and histiocytic aggregates in the duodenal villous tips of treated mice; an olfactory neuroblastoma in a cynomolgus monkey; various rodent skin lesions, including follicular parakeratotic hyperkeratosis, adnexal degeneration, and epithelial intracytoplasmic accumulations; oligodendroglioma and microgliomas in rats; a diagnostically challenging microcytic, hypochromic, responsive anemia in rats; a review of microcytes and microcytosis; nasal lesions associated with green tea extract and Ginkgo biloba in rats; corneal dystrophy in Dutch belted rabbits; valvulopathy in rats; and lymphoproliferative disease in a cynomolgus monkey.


Asunto(s)
Patología , Toxicología , Animales
20.
Toxicol Pathol ; 39(3): 463-70, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21430177

RESUMEN

This article outlines the changes and underlying rationale for modifications to the histopathological evaluation of the nervous system during toxicology and carcinogenesis studies conducted by the National Toxicology Program (NTP). In the past, routine evaluation of the nervous system was mostly limited to three sections of brain, and occasionally the spinal cord and peripheral nerves. Factors such as the increasing occurrence of human neurological diseases and associated economical cost burden, the role of unidentified environmental stressors in neurodegenerative disorders, multiple therapeutic drug-induced neuropathies noted in human clinical trials, and the exponential use of environmental chemicals with unknown neurotoxic potential necessitate a more extensive evaluation of the nervous system. The NTP has modified its protocol to include examination of key anatomic subsites related to neurodegenerative diseases such as Parkinson's disease. Modifications include four additional sections of the brain. Increasing the number of brain sections permits examination of a greater number of specific anatomic subsites with unique vulnerability. In addition, the spinal cord, peripheral nerves, trigeminal ganglion, and intestinal autonomic ganglia will be evaluated as needed. It is expected that this modified approach will increase the sensitivity of detecting neurotoxicants and neurocarcinogens important in human neurologic and neurodegenerative disorders.


Asunto(s)
Enfermedades Neurodegenerativas/patología , Neurología/métodos , Síndromes de Neurotoxicidad/patología , Toxicología/métodos , Animales , Encéfalo/anatomía & histología , Pruebas de Carcinogenicidad , Modelos Animales de Enfermedad , Ratones , Fenómenos Fisiológicos del Sistema Nervioso/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/diagnóstico , Síndromes de Neurotoxicidad/diagnóstico , Nervios Periféricos/anatomía & histología , Ratas , Médula Espinal/anatomía & histología , Ganglio del Trigémino/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...